Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2313089121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252817

RESUMO

In cystic fibrosis (CF), impaired mucociliary clearance leads to chronic infection and inflammation. However, cilia beating features in a CF altered environment, consisting of dehydrated airway surface liquid layer and abnormal mucus, have not been fully characterized. Furthermore, acute inflammation is normally followed by an active resolution phase requiring specialized proresolving lipid mediators (SPMs) and allowing return to homeostasis. However, altered SPMs biosynthesis has been reported in CF. Here, we explored cilia beating dynamics in CF airways primary cultures and its response to the SPMs, resolvin E1 (RvE1) and lipoxin B4 (LXB4). Human nasal epithelial cells (hNECs) from CF and non-CF donors were grown at air-liquid interface. The ciliary beat frequency, synchronization, orientation, and density were analyzed from high-speed video microscopy using a multiscale Differential Dynamic Microscopy algorithm and an in-house developed method. Mucins and ASL layer height were studied by qRT-PCR and confocal microscopy. Principal component analysis showed that CF and non-CF hNEC had distinct cilia beating phenotypes, which was mostly explained by differences in cilia beat organization rather than frequency. Exposure to RvE1 (10 nM) and to LXB4 (10 nM) restored a non-CF-like cilia beating phenotype. Furthermore, RvE1 increased the airway surface liquid (ASL) layer height and reduced the mucin MUC5AC thickness. The calcium-activated chloride channel, TMEM16A, was involved in the RvE1 effect on cilia beating, hydration, and mucus. Altogether, our results provide evidence for defective cilia beating in CF airway epithelium and a role of RvE1 and LXB4 to restore the main epithelial functions involved in the mucociliary clearance.


Assuntos
Fibrose Cística , Ácido Eicosapentaenoico/análogos & derivados , Humanos , Cílios , Mucosa Nasal , Inflamação
2.
Front Immunol ; 13: 915261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784330

RESUMO

Specialized pro-resolving lipid mediators (SPMs) as lipoxins (LX), resolvins (Rv), protectins (PD) and maresins (MaR) promote the resolution of inflammation. We and others previously reported reduced levels of LXA4 in bronchoalveolar lavages from cystic fibrosis (CF) patients. Here, we investigated the role of CF airway epithelium in SPMs biosynthesis, and we evaluated its sex specificity. Human nasal epithelial cells (hNEC) were obtained from women and men with or without CF. Lipids were quantified by mass spectrometry in the culture medium of hNEC grown at air-liquid interface and the expression level and localization of the main enzymes of SPMs biosynthesis were assessed. The 5-HETE, LXA4, LXB4, RvD2, RvD5, PD1 and RvE3 levels were significantly lower in samples derived from CF patients compared with non-CF subjects. Within CF samples, the 12-HETE, 15-HETE, RvD3, RvD4, 17-HODHE and PD1 were significantly lower in samples derived from females. While the mean expression levels of 15-LO, 5-LO and 12-LO do not significantly differ either between CF and non-CF or between female and male samples, the SPMs content correlates with the level of expression of several enzymes involved in SPMs metabolism. In addition, the 5-LO localization significantly differed from cytoplasmic in non-CF to nucleic (or nuclear envelope) in CF hNEC. Our studies provided evidence for lower abilities of airway epithelial cells derived from CF patients and more markedly, females to produce SPMs. These data are consistent with a contribution of CF airway epithelium in the abnormal resolution of inflammation and with worse pulmonary outcomes in women.


Assuntos
Fibrose Cística , Lipoxinas , Epitélio/metabolismo , Feminino , Humanos , Inflamação , Lipoxinas/metabolismo , Pulmão/metabolismo , Masculino
3.
Front Pharmacol ; 11: 1290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982730

RESUMO

Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...